275 research outputs found

    Two-Nucleon Scattering without partial waves using a momentum space Argonne V18 interaction

    Full text link
    We test the operator form of the Fourier transform of the Argonne V18 potential by computing selected scattering observables and all Wolfenstein parameters for a variety of energies. These are compared to the GW-DAC database and to partial wave calculations. We represent the interaction and transition operators as expansions in a spin-momentum basis. In this representation the Lippmann-Schwinger equation becomes a six channel integral equation in two variables. Our calculations use different numbers of spin-momentum basis elements to represent the on- and off-shell transition operators. This is because different numbers of independent spin-momentum basis elements are required to expand the on- and off-shell transition operators. The choice of on and off-shell spin-momentum basis elements is made so that the coefficients of the on-shell spin-momentum basis vectors are simply related to the corresponding off-shell coefficients.Comment: 14 pages, 8 Figures, typos correcte

    Full-Folding Optical Potentials for Elastic Nucleon-Nucleus Scattering based on Realistic Densities

    Get PDF
    Optical model potentials for elastic nucleon nucleus scattering are calculated for a number of target nuclides from a full-folding integral of two different realistic target density matrices together with full off-shell nucleon-nucleon t-matrices derived from two different Bonn meson exchange models. Elastic proton and neutron scattering observables calculated from these full-folding optical potentials are compared to those obtained from `optimum factorized' approximations in the energy regime between 65 and 400 MeV projectile energy. The optimum factorized form is found to provide a good approximation to elastic scattering observables obtained from the full-folding optical potentials, although the potentials differ somewhat in the structure of their nonlocality.Comment: 21 pages, LaTeX, 17 postscript figure

    An isospin dependent global nucleon-nucleus optical model at intermediate energies

    Full text link
    A global nucleon-nucleus optical potential for elastic scattering has been produced which replicates experimental data to high accuracy and compares well with other recently formulated potentials. The calculation that has been developed describes proton and neutron scattering from target nuclei ranging from carbon to nickel and is applicable for projectile energies from 30 to 160 MeV. With these ranges it is suitable for calculations associated with experiments performed by exotic beam accelerators. The potential is also isospin dependent and has both real and imaginary isovector asymmetry terms to better describe the dynamics of chains of isotopes and mirror nuclei. An analysis of the validity and strength of the asymmetry term is included with connections established to other optical potentials and charge-exchange reaction data. An on-line observable calculator is available for this optical potential.Comment: 31 pages, 21 figures, 4 tables; Accepted to Phys. Rev. C. This version includes corrections to Eq. 1 and Table 1. Erratum sent to Phys. Rev.

    Microscopic calculations of medium effects for 200-MeV (p,p') reactions

    Get PDF
    We examine the quality of a G-matrix calculation of the effective nucleon-nucleon (NN) interaction for the prediction of the cross section and analyzing power for 200-MeV (p,p') reactions that populate natural parity states in 16^{16}O, 28^{28}Si, and 40^{40}Ca. This calculation is based on a one-boson-exchange model of the free NN force that reproduces NN observables well. The G-matrix includes the effects of Pauli blocking, nuclear binding, and strong relativistic mean-field potentials. The implications of adjustments to the effective mass ansatz to improve the quality of the approximation at momenta above the Fermi level will be discussed, along with the general quality of agreement to a variety of (p,p') transitions.Comment: 36 pages, TeX, 18 figure

    Modern microwave methods in solid state inorganic materials chemistry: from fundamentals to manufacturing

    Get PDF
    No abstract available

    Intelligent evacuation management systems: A review

    Get PDF
    Crowd and evacuation management have been active areas of research and study in the recent past. Various developments continue to take place in the process of efficient evacuation of crowds in mass gatherings. This article is intended to provide a review of intelligent evacuation management systems covering the aspects of crowd monitoring, crowd disaster prediction, evacuation modelling, and evacuation path guidelines. Soft computing approaches play a vital role in the design and deployment of intelligent evacuation applications pertaining to crowd control management. While the review deals with video and nonvideo based aspects of crowd monitoring and crowd disaster prediction, evacuation techniques are reviewed via the theme of soft computing, along with a brief review on the evacuation navigation path. We believe that this review will assist researchers in developing reliable automated evacuation systems that will help in ensuring the safety of the evacuees especially during emergency evacuation scenarios

    High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications

    Get PDF
    All battery technologies are known to suffer from kinetic problems linked to the solid-state diffusion of Li in intercalation electrodes, the conductivity of the electrolyte in some cases and the quality of interfaces. For Li-ion technology the latter effect is especially acute when conversion rather than intercalation electrodes are used. Nano-architectured electrodes are usually suggested to enhance kinetics, although their realization is cumbersome. To tackle this issue for the conversion electrode material Fe3O4, we have used a two-step electrode design consisting of the electrochemically assisted template growth of Cu nanorods onto a current collector followed by electrochemical plating of Fe3O4. Using such electrodes, we demonstrate a factor of six improvement in power density over planar electrodes while maintaining the same total discharge time. The capacity at the 8C rate was 80% of the total capacity and was sustained over 100 cycles. The origin of the large hysteresis between charge and discharge, intrinsic to conversion reactions, is discussed and approaches to reduce it are proposed. We hope that such findings will help pave the way for the use of conversion reaction electrodes in future-generation Li-ion batteries
    corecore